Section 14.3 Partial Derivatives
Ex: 76
Determine whether each of the following functions is a solution of
Laplace’s equation
\[u_{xx} + u_{yy} = 0.\]
- \(u = x^2 + y^2\)
- \(u = \frac{x^2 - y^2}{x^2 +
y^2}\)
- \(u = x^3 + 3xy^2\)
- \(u = \ln \sqrt{x^2 + y^2}\)
- \(u = \sin x \cosh y + \cos x \sinh
y\)
- \(u = e^{-x} \cos y - e^{-y} \cos x\)