Section 13.2: Derivatives and Integrals of Vector Functions
Exercise 21
If \(\mathbf{r}(t) = \langle t, t^2, t^3 \rangle\), find \(\mathbf{r}'(t)\), \(\mathbf{T}(1)\), \(\mathbf{r}''(t)\), and \(\mathbf{r}'(t) \times \mathbf{r}''(t)\).
If \(\mathbf{r}(t) = \langle t, t^2, t^3 \rangle\), find \(\mathbf{r}'(t)\), \(\mathbf{T}(1)\), \(\mathbf{r}''(t)\), and \(\mathbf{r}'(t) \times \mathbf{r}''(t)\).