Section 13.2: Derivatives and Integrals of Vector Functions

Exercise 22

If \(\mathbf{r}(t) = \langle e^{2t}, e^{-2t}, te^{2t} \rangle\), find \(\mathbf{T}(0)\), \(\mathbf{r}''(0)\), and \(\mathbf{r}'(t) \cdot \mathbf{r}''(t)\).