Section 13.2: Derivatives and Integrals of Vector Functions
Exercise 57
If \(\mathbf{u}(t) = \mathbf{r}(t) \cdot [\mathbf{r}'(t) \times \mathbf{r}''(t)]\), show that \(\mathbf{u}'(t) = \mathbf{r}(t) \cdot [\mathbf{r}'(t) \times \mathbf{r}'''(t)]\)
If \(\mathbf{u}(t) = \mathbf{r}(t) \cdot [\mathbf{r}'(t) \times \mathbf{r}''(t)]\), show that \(\mathbf{u}'(t) = \mathbf{r}(t) \cdot [\mathbf{r}'(t) \times \mathbf{r}'''(t)]\)