Section 14.5 Chain Rule
EXAMPLE
If \(g(s, t) = f(s^2 - t^2, t^2 - s^2)\) and \(f\) is differentiable, show that \(g\) satisfies the equation \[ t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = 0 \]
If \(g(s, t) = f(s^2 - t^2, t^2 - s^2)\) and \(f\) is differentiable, show that \(g\) satisfies the equation \[ t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = 0 \]
SOLUTION Let \(x = s^2 - t^2\) and \(y = t^2 - s^2\). Then \(g(s, t) = f(x, y)\) and the Chain Rule gives \[ \frac{\partial g}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial f}{\partial x}(2s) + \frac{\partial f}{\partial y}(-2s) \] \[ \frac{\partial g}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = \frac{\partial f}{\partial x}(-2t) + \frac{\partial f}{\partial y}(2t) \] Therefore \[ t \frac{\partial g}{\partial s} + s \frac{\partial g}{\partial t} = t \left( 2s \frac{\partial f}{\partial x} - 2s \frac{\partial f}{\partial y} \right) + s \left( -2t \frac{\partial f}{\partial x} + 2t \frac{\partial f}{\partial y} \right) = 0 \]