Determinants
Remark
We know that \((adj A)A = |A|I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}\) Taking determinant of both sides, we get \(|(adj A)A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}\) \(|adj A| |A| = |A|^3 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = |A|^3(1) = |A|^3\) In general, if A is a square matrix of order n, then \(|adj(A)| = |A|^{n-1}\).