We have \(AB = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}\). Since \(|AB| = 14 - 25 = -11 \neq 0\), \((AB)^{-1}\) exists and is given by \((AB)^{-1} = \frac{1}{-11}adj(AB) = \frac{1}{-11}\begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}\). Further, \(|A| = -8 - 3 = -11 \neq 0\) and \(|B| = 3 - 2 = 1 \neq 0\). Therefore, \(A^{-1}\) and \(B^{-1}\) both exist. \(A^{-1} = \frac{1}{-11}\begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}\) \(B^{-1} = \frac{1}{1}\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\) Therefore \(B^{-1}A^{-1} = \frac{1}{11}\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}\). Hence \((AB)^{-1} = B^{-1}A^{-1}\).