Section 15.1: Double Integrals over rectangles
Example: midpoint rule
EXAMPLE 3 Use the Midpoint Rule with \(m = n = 2\) to estimate the value of the integral \(\iint_R (x - 3y^2) dA\), where \(R = \{(x, y) | 0 \le x \le 2, 1 \le y \le 2\}\).
EXAMPLE 3 Use the Midpoint Rule with \(m = n = 2\) to estimate the value of the integral \(\iint_R (x - 3y^2) dA\), where \(R = \{(x, y) | 0 \le x \le 2, 1 \le y \le 2\}\).
SOLUTION In using the Midpoint Rule with \(m = n = 2\), we evaluate \(f(x, y) = x - 3y^2\) at the centers of the four subrectangles shown in Figure 10. So \(\bar{x}_1 = 1/2, \bar{x}_2 = 3/2, \bar{y}_1 = 5/4,\) and \(\bar{y}_2 = 7/4\). The area of each subrectangle is \(\Delta A = 1/2\). Thus \[ \iint_R (x - 3y^2) dA \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(\bar{x}_i, \bar{y}_j) \Delta A \] \[ = f(\bar{x}_1, \bar{y}_1)\Delta A + f(\bar{x}_1, \bar{y}_2)\Delta A + f(\bar{x}_2, \bar{y}_1)\Delta A + f(\bar{x}_2, \bar{y}_2)\Delta A \] \[ = f(1/2, 5/4)\Delta A + f(1/2, 7/4)\Delta A + f(3/2, 5/4)\Delta A + f(3/2, 7/4)\Delta A \] \[ = \left(-\frac{67}{16}\right)\frac{1}{2} + \left(-\frac{139}{16}\right)\frac{1}{2} + \left(-\frac{51}{16}\right)\frac{1}{2} + \left(-\frac{123}{16}\right)\frac{1}{2} = -\frac{1}{32}(67+139+51+123) = -\frac{380}{32} = -11.875 \] Thus we have \[ \iint_R (x - 3y^2) dA \approx -11.875 \]