Section 1.4: Composition of Functions
Completion requirements
Example
Example 25
Consider the identity function \(I_{\mathbb{N}} : \mathbb{N} \rightarrow
\mathbb{N}\) defined as \(I_{\mathbb{N}}(x) = x\), \(\forall\, x \in \mathbb{N}\).
Show that although \(I_{\mathbb{N}}\)
is onto but \(I_{\mathbb{N}} + I_{\mathbb{N}}
: \mathbb{N} \rightarrow \mathbb{N}\) defined as \[
(I_{\mathbb{N}} + I_{\mathbb{N}})(x) = I_{\mathbb{N}}(x) +
I_{\mathbb{N}}(x) = x + x = 2x
\] is not onto.