Section 13.1: Vector Functions and Space Curves
Completion requirements
Exercise 53
Suppose u and v are vector functions that possess limits as \(t \to a\) and let c be a constant. Prove the following properties of limits. (a) \(\lim_{t \to a} [\mathbf{u}(t) + \mathbf{v}(t)] = \lim_{t \to a} \mathbf{u}(t) + \lim_{t \to a} \mathbf{v}(t)\) (b) \(\lim_{t \to a} c\mathbf{u}(t) = c \lim_{t \to a} \mathbf{u}(t)\) (c) \(\lim_{t \to a} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \lim_{t \to a} \mathbf{u}(t) \cdot \lim_{t \to a} \mathbf{v}(t)\) (d) \(\lim_{t \to a} [\mathbf{u}(t) \times \mathbf{v}(t)] = \lim_{t \to a} \mathbf{u}(t) \times \lim_{t \to a} \mathbf{v}(t)\)