Section 14.3 Partial Derivatives
Completion requirements
Ex 105
Let
\[
f(x, y) =
\begin{cases}
\frac{x^3 y - x y^3}{x^2 + y^2}, & \text{if } (x, y) \ne (0, 0) \\
0, & \text{if } (x, y) = (0, 0)
\end{cases}
\]
- Use a computer to graph \(f\).
- Find \(f_x(x, y)\) and \(f_y(x, y)\) when \((x, y) \ne (0, 0)\).
- Find \(f_x(0, 0)\) and \(f_y(0, 0)\) using Equations 2 and 3.
- Show that \(f_{xy}(0, 0) = -1\) and
\(f_{yx}(0, 0) = 1\).
- Does the result of part (d) contradict Clairaut’s Theorem? Use graphs of \(f_{xy}\) and \(f_{yx}\) to illustrate your answer.