Inverse Trigonometric Functions
Completion requirements
Example 3
Show that (i) \(sin^{-1}(2x\sqrt{1-x^2}) =
2sin^{-1}x, -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}\)
(ii) \(sin^{-1}(2x\sqrt{1-x^2}) = 2cos^{-1}x,
\frac{1}{\sqrt{2}} \le x \le 1\)