Solution
We have \(M_{11} = |\begin{smallmatrix} 0
& 4 \\ 5 & -7 \end{smallmatrix}| = 0 - 20 = -20; A_{11} =
(-1)^{1+1}(-20) = -20\) \(M_{12} =
|\begin{smallmatrix} 6 & 4 \\ 1 & -7 \end{smallmatrix}| = -42 -
4 = -46; A_{12} = (-1)^{1+2}(-46) = 46\) \(M_{13} = |\begin{smallmatrix} 6 & 0 \\ 1 &
5 \end{smallmatrix}| = 30 - 0 = 30; A_{13} = (-1)^{1+3}(30) =
30\) \(M_{21} = |\begin{smallmatrix} -3
& 5 \\ 5 & -7 \end{smallmatrix}| = 21 - 25 = -4; A_{21} =
(-1)^{2+1}(-4) = 4\) \(M_{22} =
|\begin{smallmatrix} 2 & 5 \\ 1 & -7 \end{smallmatrix}| = -14 -
5 = -19; A_{22} = (-1)^{2+2}(-19) = -19\) \(M_{23} = |\begin{smallmatrix} 2 & -3 \\ 1
& 5 \end{smallmatrix}| = 10 - (-3) = 13; A_{23} = (-1)^{2+3}(13) =
-13\) \(M_{31} = |\begin{smallmatrix}
-3 & 5 \\ 0 & 4 \end{smallmatrix}| = -12 - 0 = -12; A_{31} =
(-1)^{3+1}(-12) = -12\) \(M_{32} =
|\begin{smallmatrix} 2 & 5 \\ 6 & 4 \end{smallmatrix}| = 8 - 30
= -22; A_{32} = (-1)^{3+2}(-22) = 22\) \(M_{33} = |\begin{smallmatrix} 2 & -3 \\ 6
& 0 \end{smallmatrix}| = 0 - (-18) = 18; A_{33} = (-1)^{3+3}(18) =
18\) Now \(a_{11} = 2, a_{12} = -3,
a_{13} = 5\). Also \(A_{31} = -12,
A_{32} = 22, A_{33} = 18\) So \(a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} =
2(-12) + (-3)(22) + 5(18) = -24 - 66 + 90 = 0\)