Solution
We have \(|A| = 1(16-9) - 3(4-3) + 3(3-4) =
7 - 3 - 3 = 1 \neq 0\). Now \(A_{11} =
7, A_{12} = -1, A_{13} = -1, A_{21} = -3, A_{22} = 1, A_{23} = 0, A_{31}
= -3, A_{32} = 0, A_{33} = 1\). Therefore, \(adj A = \begin{bmatrix} 7 & -3 & -3 \\ -1
& 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}\) Now, \(A(adj A) = \begin{bmatrix} 1 & 3 & 3 \\ 1
& 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7
& -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1
\end{bmatrix} = \begin{bmatrix} 7-3-3 & -3+3+0 & -3+0+3 \\ 7-4-3
& -3+4+0 & -3+0+3 \\ 7-3-4 & -3+3+0 & -3+0+4
\end{bmatrix}\) \(= \begin{bmatrix} 1
& 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
= (1)\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0
& 1 \end{bmatrix} = |A|I\). Also \(A^{-1} = \frac{1}{|A|}adj A =
\frac{1}{1}\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\
-1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3
\\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}\)