Solution
We have \(AB = \begin{bmatrix} 2 & 3 \\
1 & -4 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ -1 & 3
\end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14
\end{bmatrix}\). Since \(|AB| = 14 - 25
= -11 \neq 0\), \((AB)^{-1}\)
exists and is given by \((AB)^{-1} =
\frac{1}{-11}adj(AB) = \frac{1}{-11}\begin{bmatrix} -14 & -5 \\ -5
& -1 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5 \\ 5
& 1 \end{bmatrix}\). Further, \(|A|
= -8 - 3 = -11 \neq 0\) and \(|B| = 3 -
2 = 1 \neq 0\). Therefore, \(A^{-1}\) and \(B^{-1}\) both exist. \(A^{-1} = \frac{1}{-11}\begin{bmatrix} -4 & -3
\\ -1 & 2 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 4 & 3 \\ 1
& -2 \end{bmatrix}\) \(B^{-1} =
\frac{1}{1}\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} =
\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\) Therefore
\(B^{-1}A^{-1} = \frac{1}{11}\begin{bmatrix} 3
& 2 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 4 & 3 \\ 1 &
-2 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5 \\ 5 & 1
\end{bmatrix}\). Hence \((AB)^{-1} =
B^{-1}A^{-1}\).