Solution
We have \(A^2 = A \cdot A = \begin{bmatrix}
2 & 3 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} 2 & 3 \\ 1 &
2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7
\end{bmatrix}\). Hence \(A^2 - 4A + I =
\begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - 4\begin{bmatrix}
2 & 3 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0
& 1 \end{bmatrix}\) \(=
\begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix}
8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0
& 1 \end{bmatrix} = \begin{bmatrix} 7-8+1 & 12-12+0 \\ 4-4+0
& 7-8+1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0
\end{bmatrix} = O\) Now \(A^2 - 4A + I
= O\) Therefore \(A A - 4A =
-I\) or \(A A (A^{-1}) - 4A A^{-1} = -I
A^{-1}\) (Post multiplying by \(A^{-1}\) because \(|A| \neq 0\)) or \(A(A A^{-1}) - 4I = -A^{-1}\) or \(AI - 4I = -A^{-1}\) or \(A - 4I = -A^{-1}\) or \(A^{-1} = 4I - A = 4\begin{bmatrix} 1 & 0 \\ 0
& 1 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2
\end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} -
\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2
& -3 \\ -1 & 2 \end{bmatrix}\) Hence \(A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2
\end{bmatrix}\)