Solution
Let \(A = \begin{bmatrix} 1 & -1 &
2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}\) and
\(B = \begin{bmatrix} -2 & 0 & 1 \\ 9
& 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}\). \(AB = \begin{bmatrix} 1 & -1 & 2 \\ 0 &
2 & -3 \\ 3 & -2 & 4 \end{bmatrix}\begin{bmatrix} -2 & 0
& 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix} =
\begin{bmatrix} -2-9+12 & 0-2+2 & 1+3-4 \\ 0+18-18 & 0+4-3
& 0-6+6 \\ -6-18+24 & 0-4+4 & 3+6-8 \end{bmatrix} =
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0
& 1 \end{bmatrix} = I\) So, \(A^{-1} = B = \begin{bmatrix} -2 & 0 & 1 \\
9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}\). The
system of equations can be written as \(AX =
C\), where \(C = \begin{bmatrix} 1 \\ 1
\\ 2 \end{bmatrix}\). \(X = A^{-1}C =
\begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1
& -2 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} =
\begin{bmatrix} -2+0+2 \\ 9+2-6 \\ 6+1-4 \end{bmatrix} = \begin{bmatrix}
0 \\ 5 \\ 3 \end{bmatrix}\). Hence \(x=0, y=5, z=3\).